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Abstract
Self-consistent density functional theory based on a direct supercell approach
is reported for Zn1−xMgxSe pseudobinary alloy. The calculation includes,
in a natural way, atomic relaxation and self-consistent charge transfer,
hence providing a link between the electronic structure and the interaction
energies which decide phase stability. We model the alloys at some selected
compositions with ordered structures described in terms of periodically repeated
supercells. Results include structural, electronic, and bonding properties as well
as the density of occupied states and their variations upon alloying. Using the
approach of Zunger and co-workers, the microscopic origins of compositional
disorder have been detailed and explained. The disorder parameter (bowing) is
found to be small and is mainly caused by the volume deformation effect. The
chemical charge transfer also contributes to the bowing parameter at a smaller
magnitude, while the relaxation contribution is even smaller.

1. Introduction

Wide-gap semiconductors have recently aroused enormous technological interest [1] both
because of their potential use in devices capable of operating at high power levels and high
temperatures, and because of the need for optical materials active in the blue–green spectral
range. For technological applications, ZnSe can be used for operation in this spectral range
provided that current device lifetime problems are overcome. One major goal in materials
engineering for opto-electronic applications is the ability to tune the band gap independently
in order to obtain the desired optical properties, and the lattice parameter of the material in
order to be able to grow it on a given substrate.

Recent theoretical works have addressed these systems of alloys [2,3]. Benkabou et al [4]
have calculated the band-gap bowing of this alloy by using the empirical pseudopotential
method and the virtual-crystal approximation (VCA). Another theoretical work reported a
first-principles study of the structural properties of ZnSe–MgSe superlattices [5]. In addition,
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extensive theoretical studies of the quaternary alloy Zn1−xMgxS1−ySey addressed the structural
and thermodynamic properties [7] and the optical gap [6] in detail. The latter works include the
main preliminary steps of our present work regarding the properties of the pure materials that
form the binary alloy studied, i.e. ZnSe and MgSe. This eliminates the need to conduct another
exhaustive study of the bulk materials; we note that we use the same method of calculation.

In this work we focus our efforts on the study of the variation of the optical band gap
within the alloy fraction. The alloy is modelled at some selected compositions by ordered
structures described in terms of periodically repeated supercells. This can be done with little
effort (i.e. with few atoms per unit cell) for the compositions x = 0.25, 0.5, 0.75. The main
focus in the present study is on the determination of the disorder present in this alloy. We
deduce the bowing value first from a simple quadratic fit of the band-gap variation versus the
alloy concentration. Secondly, the bowing is calculated following the approach of Zunger
and co-workers [8]. The latter method allows us to analyse the physical origins of bowing.
The chemical disorder is analysed in terms of charge-density transfer and is explained by the
estimated ionicity variation.

The remainder of this paper is organized as follows. The computational details are given
in section 2. Results are presented in section 3. Section 4 contains the conclusions.

2. Computational details

The ground-state properties of our system are computed by using the plane-wave (PW)
pseudopotential scheme. The frozen-core approximation holds when the energies of the core
electrons are much lower than the valence electron energies. In such a case, the overlap
between the core and the valence charges is negligible and it is possible to separate the non-
linear exchange–correlation term as follows: εxc(nc(r) + nv(r)) ≈ εxc(nc(r)) + εxc(nv(r)),

including the core part in the pseudopotential.
The case of zinc atoms is however more difficult to deal with, because the energy of the

closed shell of 3d orbitals is quite close to the 4s and 4p electron energy and higher than the anion
s band energy in the compounds considered here. This fact suggests the possibility of a failure
of the frozen-core approximation: in the solid there is a core relaxation which is completely
neglected in the pseudopotential picture. Furthermore, there is a large overlap between the core
and the valence charges. In principle, one may consider also d electrons as valence electrons,
but this would require the use of a very large PW basis set with the standard norm-conserving
pseudopotential technique or of the more cumbersome ultrasoft-pseudopotential scheme [9].
The error associated with the core relaxation is almost unavoidable with PW, but it is possible
to improve the transferability of the potential by following the von Barth and Car (VBC)
recipe [10], in which they use the following analytical form:

vloc(r) = −Zv

r
erf(r

√
αc), vl = (al + blr

2) exp(−αlr
2), (1)

and by minimizing the squared differences of pseudo-electron and all-electron wavefunctions
for a number of electronic configurations [11].

It is possible to correct the large error due to the charge overlap by adopting the non-linear
core-corrections (NLCC) scheme [11, 12]. The NLCC solution consists in including the total
charge rather than just the valence in the dependence of the exchange–correlation term:

Exc =
∫

εxc(nc(r) + nv(r))(nc(r) + nv(r)) dr, (2)
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where nc is the core charge calculated ‘once for all’ for the atomic configuration, and then
added to the valence charge when needed. In our calculations, the core charge is parametrized
as

nc(r) = (acc + bccr
2)e−αccr

2
(3)

which is easily computed both in direct and reciprocal space. This correction improves the
results also for the magnesium pseudopotential; we describe the Se atoms in the VBC scheme.

We have calculated the structural properties of the two pure materials in the zinc-blende
structure. The electron-gas exchange–correlation energy and potential used in our local density
approximation (LDA) scheme are those determined by Ceperley–Alder quantum Monte Carlo
simulations [13], in the Perdew–Zunger [14] parametrization. Our results are well converged
using a kinetic energy cut-off of 15 Ryd and BZ sampling of ten special k-points [15] for the
structures used.

3. Results and discussion

It is well known that energy gaps are systematically underestimated in ab initio calculations
and that this is an intrinsic feature of density functional theory (DFT) with the DFT-LDA [16],
DFT being a ground-state theory not suitable for describing excited-state properties, such as the
energy gap. Other approaches based on quasi-particle description of electronic excitations in
the quasi-particle approach, based on the Green function method, and in the GW approximation
(G is the Green function, W is the screened Coulomb interaction) [18] have been developed
in the last decade, and applied also to the case of II–VI semiconductors [17]. However, it is
widely accepted that LDA electronic band structures are qualitatively in good agreement with
experiments as regards the ordering of the energy levels and the shape of the bands.

ZnSe and MgSe are the basic constituents, corresponding to x = 0, 1 in the
ternary Zn1−xMgxSe alloy. The calculation of the structural properties of such materials
is straightforward within DFT. The comparison of our theoretical predictions with the
experimental structural parameters and phase stability obtained in these simpler cases is a
necessary step in determining the degree of accuracy that we can expect for the alloy. However,
since calculations of the properties of pure materials have already been reported in the previous
works of Saitta et al [6] using the same method and also the same code, there is no need
to present an exhaustive study for the pure materials. Nevertheless, we refer the reader to
the above-mentioned works for additional evidence regarding the electronic and structural
properties of ZnSe and MgSe. Thus, our main goal remains that of investigating the electronic
structure of the binary alloy Zn1−xMgxSe and identifying the origins of the bowing in the
optical band gap.

3.1. Theoretical approaches to the alloy problem

Through density functional theory, it is possible to calculate the ground-state energy of a given
microscopic configuration in a disordered system. This choice is however not of practical
use: in the theoretical study of disordered alloys, one should consider several supercells
containing thousands of atoms, in order to cope with disorder, and to take into account different
configurations. For this reason, such a ‘direct’ approach has always been considered well
beyond the achievable numerical power. The typical approaches to the study of alloys are
based on approximations in which all the possible, inequivalent, microscopical configurations
are averaged into an effective medium having the same crystal structure as the underlying
lattice, in order to recover the translational symmetry.
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The simplest of these historical approaches is the so-called VCA [19], in which the real,
disordered, alloy is modelled with a crystalline solid of ‘virtual’ atoms which are given by
an average, weighted by the composition, of the ‘real’ atoms, and whose chemical properties
are intermediate between those of the pure constituents. A refinement of this method is the
coherent potential approximation (CPA) [20], where the potential is modified with respect to
VCA only at lattice sites; hence all the like atoms are separately considered equivalent and
each is embedded in a uniform medium. These theories are all non-structural in the sense that
they consider only the average occupations of lattice sites, retaining the topology, but removing
all the information associated with the geometrical arrangements of atoms around such sites.

The range of validity of such approximations is limited to those properties that
are associated with symmetry-preserving, uniform-volume changes, and that for typical
semiconductors are simple functions of the composition, and depend only weakly on the
local environment of the atoms. These theories are therefore inadequate for the study of
properties, such as the vibrational or electronic properties, that in many cases strongly depend
on the substitutional disorder; for these it is necessary to consider different approaches, more
recently developed.

The condition of lattice matching, assumed up to now, is very well satisfied in some III–
V semiconductor alloys such as GaxAl1−xAs. In the general case, however, the system at
equilibrium does not have the ideal geometry of the lattice, but must be locally distorted from
the ideal positions, in order to account for the different bond lengths of its constituents. In the
case of a binary or pseudobinary alloy, the molar fractions of the pure constituents needed for
the formation of the alloy with a given composition, x, are uniquely determined by it.

3.2. Projected density of states and chemical bonds

In the present work, we model the alloys at some selected compositions with ordered structures
described in terms of periodically repeated supercells. This can be done with little effort (i.e.
with few atoms per unit cell) for the compositions x = 0.25, 0.5, 0.75. For the structures
considered, we perform a structural optimization minimizing the total energy with respect
to the cell parameters and to the atomic positions. For the compositions x = 0.25 and
0.75 the simplest structure is an eight-atom simple cubic cell (luzonite): the cations with the
lower concentration form a regular simple cubic lattice. For the composition x = 0.5, the
smallest ordered structure is a four-atom tetragonal cell, corresponding to the (ZnSe)(MgSe)
(001) or—equivalently—(110) superlattice. This structure is strongly anisotropic, and thus
not very suitable for simulating random alloys which are macroscopically isotropic. We
consider therefore also the chalcopyrite structure, which has a 16-atom tetragonal cell. The
corresponding structures are presented in figure 1.

Using the optimized structures, we perform density-of-states (DOS) calculations. With
the various technical parameters used in the calculations (kinetic energy cut-off, ten special
points for self-consistency, points for the band-structure non-self-consistent calculations), we
have obtained a DOS with a numerical resolution of 0.1 eV. The uncertainty being much larger
than the numerical one arises from the use of the DFT-LDA, and from the non-relativistic
approach. We report in figure 2, the DOS for the average concentration (50% Mg). The figure
corresponds to relaxed chalcopyrite structure. In the same plot, we report the projected DOS
calculated with a factor of proportionality corresponding to the concentrations of the species
considered. The high peaks at low and high energies corresponds mainly to s-like Se states;
the contributions arising from the Zn and Mg species are rather weaker and more or less the
same.
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Figure 1. Selected ordered pseudobinary structures with cationic disorder: the zinc-blende
structure (a) for x = 0, 1; luzonite (b) for x = 0.25, 0.75; the (001) SL (c), (111) SL (d), and
chalcopyrite structure (e) for x = 0.5.

In figure 3, we display the valence electronic charge-density differences between the pure
compounds and the chemical bond for the selected compositions. In this figure, we can see
the negative values of the difference of the charges of ZnSe (bulk) and Zn–Se bonds at the
intermediate concentrations (x = 0.25, 0.50, and 0.75). The situation is obviously the inverse
when we consider the difference in charge between the pure MgSe and the Mg–Se bonds at the
same intermediate concentrations, due to the supposed higher ionicity of MgSe. Moreover, we
underline the presence of a pronounced positive part for the first case (Zn–Se differences) and
the negative charges for the second one (Mg–Se differences), especially at x = 0.50. At this
concentration the compensation of charges is most important, as is confirmed from the ionicity
calculations presented in figure 4. The calculations of the ionicity parameter have been carried
out on the basis of our ionicity model [21] which gives values of the same order of magnitude
as those of Garcia and Cohen [22] for the pure compounds (ZnSe and MgSe). These values
are roughly 0.63 and 0.79 respectively for ZnSe and MgSe, although the reported ones for the
bonds upon alloying are arbitrarily higher. This essentially shows that for the intermediate
concentration the alloy exhibits somewhat more ionic character than the pure compounds.
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Figure 2. Projected and total DOS for (Zn, Mg)0.5Se. The DOS are given in states per unit cell.
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Figure 3. The valence charge-density difference between the pure compound and its bonds at an
intermediate concentration of the alloy.

3.3. Optical bowing and its origins

In this work, we follow the approach of special quasi-random structures (SQS) [8], which are
rather small supercells containing up to a few atoms, and yet are still representative of the
alloy (figure 1). They are in fact constructed in such a way as to have short-range correlations
as similar to those of the ‘real’ alloy as possible. This approach allows application of first-
principles methods to the calculation of the optical properties of solid solutions.
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Describing alloys in terms of short-period supercells clearly introduces spurious
correlations beyond a certain distance. However, for many physical properties, interactions
between distant neighbours are generally much less important than those between close
neighbours, and it will be shown that this condition is satisfactorily fulfilled for the electronic
properties of Zn1−xMgxSe.

To analyse the physical origins of bowing, we follow Bernard and Zunger [8] and
decompose b into three components. The overall bowing value at x = 0.5 measures the
change in band gap in the formal reaction

AC(aAC) + BC(aBC) → A0.5B0.5C(ā, {ueq}) (4)

where aAC and aBC are the equilibrium lattice constants of the binary constituents AC and
BC, respectively; ā is the alloy equilibrium lattice constant, and {ueq} denotes the equilibrium
values of the cell internal structural parameters of the alloy. We now decompose reaction (4)
into three steps:

AC(aAC) + BC(aBC)
VD→ AC(ā) + BC(ā), (5)

AC(ā) + BC(ā)
CE→ A0.5B0.5C(ā, {u0}), (6)

A0.5B0.5C(ā, {u0}) SR→ A0.5B0.5C(ā, {ueq}). (7)

The first step measures the ‘volume deformation’ (VD) contribution bVD, the second the
‘charge-exchange’ (CE) contribution bCE due to formation of the unrelaxed (u = u0) alloy
from AC + BC already prepared at the final lattice constant ā, and the final step measures
changes due to ‘structural relaxation’ (SR), i.e., u0 → ueq . The total bowing b is

b = bVD + bCE + bSR. (8)

We decompose the optical bowing value (after crystal-field averaging) of Zn1−xMgxSe
into VD, CE, and SR pieces. The calculated average lattice parameter is very close to Vegard’s
prediction. The bowing components are reported in table 1 together with the bowing found
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Figure 5. The energy gap of (Zn, Mg) Se pseudobinary alloy as function of the composition.

Table 1. Decomposition of the optical bowing into VD, CE, and SR contributions (all values are
in eV).

bVD bCE bSR b

Present work 2.0702 −1.4594 −1.1768 −0.56
Present work from equation (9) −0.544
VCA 1.711 [4]
Experiment 0.47 [23]

from the non-linear variation of the band gap versus concentration. The latter is plotted in
figure 5 and shows the following variation:

Eg(x) = 1.9856 + 1.081x − 0.544x2. (9)

The quadratic parameter reflects the disorder effects, i.e. the bowing, which is in excellent
agreement with the value found from the approach of Zunger and co-workers. The comparison
with the previous VCA calculation and/or with experiment [23] gives however less agreement;
nevertheless, the order of magnitude is small, which confirms a weak general bowing. From
the method of Zunger and co-workers, we can extract the different contributions to the disorder.
Table 1 shows a strong bowing contribution from the volume deformation effects with a value
of 2.07 and a second contribution which comes from the charge-transfer effects (−1.46), which
is more important than the disorder due to the relaxation effects. The lattice difference between
the two pure compounds (5.59 Å for ZnSe and 5.99 Å for MgSe) contributes fundamentally
to the deformation effects and the relaxation ones. The ionicity differences between the
constituents, as shown in the previous paragraph, mainly cause charge-transfer effects.

4. Conclusions

Self-consistent density functional calculations based on a direct supercell approach are reported
for Zn1−xMgxSe pseudobinary alloy. We have shown that a disordered solution can be
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mimicked by using rather small supercells that reproduce the alloy as well as is possible.
Our calculations provide the equilibrium structural properties of the alloy, the projected DOS,
as well as the bonding behaviour for the alloy compositions. The bowing is found to be small
and mainly caused by the volume deformation effects, followed by the chemical charge-transfer
contribution, and then by the relaxation contribution as well. It is worth noting that even if the
total bowing is found to be small, there may be a range of concentrations where a larger band
gap can be exhibited when the lattice constant takes an intermediate value.
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